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The health of the kidney filtration barrier requires communication among podocytes, endothelial cells,
and mesangial cells. Disruption of these cell-cell interactions is thought to contribute to disease
progression in chronic kidney diseases (CKDs). Podocyte ablation via doxycycline-inducible deletion of
an essential endogenous molecule, CTCF [inducible podocyte-specific CTCF deletion (iCTCFpod�/�)], is
sufficient to drive progressive CKD. However, the earliest events connecting podocyte injury to dis-
rupted intercellular communication within the kidney filter remain unclear. Single-cell RNA sequencing
of kidney tissue from iCTCFpod�/� mice after 1 week of doxycycline induction was performed to generate
a map of the earliest transcriptional effects of podocyte injury on cell-cell interactions at single-cell
resolution. A subset of podocytes had the earliest signs of injury due to disrupted gene programs for
cytoskeletal regulation and mitochondrial function. Surviving podocytes up-regulated collagen type IV
ɑ5, causing reactive changes in integrin expression in endothelial populations and mesangial cells.
Intercellular interaction analysis revealed several receptor-ligand-target gene programs as drivers of
endothelial cell injury and abnormal matrix deposition. This analysis reveals the earliest disruptive
changes within the kidney filter, pointing to new, actionable targets within a therapeutic window that
may allow us to maximize the success of much needed therapeutic interventions for CKDs. (Am J Pathol
2022, 192: 281e294; https://doi.org/10.1016/j.ajpath.2021.11.004)
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Chronic kidney diseases (CKDs) affect 700 million people
globally, yet specific therapies are lacking.1 Many kidney
diseases originate in the glomerulus, the filtration unit of the
kidney. The glomerulus consists of (i) podocytes, special-
ized postmitotic cells with elaborate foot processes that
interdigitate forming slit diaphragms and wrapping around
glomerular capillaries; (ii) endothelial cells, that lie opposite
podocytes on a shared glomerular basement membrane
(GBM); (iii) mesangial cells, that form a matrix that pro-
vides structural support for the glomerulus; and (iv) parietal
epithelial cells (PECs), that line the Bowman capsule.2

Podocyte injury, in particular, leads to many highly preva-
lent, progressive kidney diseases, including diabetic kidney
disease (DKD), focal segmental glomerulosclerosis (FSGS),
and nephrotic syndrome (both idiopathic and genetic). The
canonical pattern of injury results in the loss of
stigative Pathology. Published by Elsevier Inc
interdigitating podocyte foot processes, known as foot
process effacement, caused by a rearrangement of the actin
cytoskeleton. This effacement leads to a disruption of the
slit diaphragm, the physical barrier that functions as a filter,
followed by podocyte detachment or death.3,4 On the other
hand, in addition to intact podocytes, the formation and
maintenance of the glomerular filtration barrier require
. All rights reserved.
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intraglomerular communication, tightly controlled by a se-
ries of autocrine and paracrine signaling mechanisms. For
example, vascular endothelial growth factor A (VEGFA) is
a prosurvival signal for endothelial cells secreted by podo-
cytes, and platelet-derived growth factor B (PDGFB) is a
prosurvival signal for mesangial cells secreted by endothe-
lial cells.5 Disruption of these cell-cell interactions are
frequently observed in a host of glomerular diseases,
including FSGS and DKD.6 Therefore, identifying the
earliest disruptive changes to the glomerulus may offer
novel targets and the opportunity to optimize therapeutic
success for the treatment of kidney diseases.

Single-cell RNA sequencing (scRNAseq) has revolu-
tionized the ability to study individual cell types of complex
tissues and cell states after specific perturbations.7,8 Recent
scRNAseq studies in kidney have provided insight into the
transcriptional profiles of kidney cell types in healthy mice
and human samples as well as in some disease states,
including DKD and lupus nephritis.9e12 However, detailed
studies of glomerular cell states have been limited by the
small number of cells available for analysis. Furthermore,
the earliest cell typeespecific changes that occur in all
glomerular cells on podocyte injury have not been moni-
tored and are yet to be defined.

Podocyte ablation via podocyte-specific inducible dele-
tion of an essential endogenous protein, CTCF, leads to
progressive proteinuric kidney disease and CKD.13 Histor-
ically, CKD mouse models were generated by inducing
kidney injury by exogenous toxins or surgical interventions,
suboptimal systems that fall short of recapitulating
sequential mechanistic changes. Deletion of CTCF, an
essential endogenous molecule, leads to rapid podocyte loss,
severe progressive albuminuria, bone mineral metabolism
changes, kidney failure, and premature death.13 The induc-
ible podocyte-specific CTCF deletion (iCTCFpod�/�) model
provides the unique opportunity to study changes in intra-
glomerular cell-cell interactions as a consequence of
induced podocyte injury. Podocyte CTCF expression is
undetectable at the earliest timepoint, at 1 week of
doxycycline-mediated Cre induction in iCTCFpod�/�

mice.13 Significant and progressive podocyte loss, as
measured by histologic analysis, starts at 2 weeks after Cre
induction. In the current study, a detailed analysis was
performed at the 1-week time point to identify the earliest
changes in intraglomerular cell-cell interactions driven by
podocyte injury that ultimately lead to CKD.

Materials and Methods

Animal Care

This study was approved by the Animal Care and Use
Committee at Brigham and Women’s Hospital, Harvard
Medical School. All animal studies were performed in
accordance with guidelines established and approved by the
Animal Care and Use Committee at Brigham and Women’s
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Hospital, Harvard Medical School. iCrepod-Ctcfwt/fl mice
were generated as previously described13 and inbred to
generate iCrepod-Ctcffl/fl (iCTCFfl/fL) and iCrepod-Ctcfwt/wt

[wild-type (WT)] mice. Both male and female mice were
used in this study. Doxycycline (4 g/L) (Sigma D9891) was
continuously administered in drinking water that contained
sucrose (50 g/L) (VWR BDH0308) to both iCTCFfl/fL

(generates iCTCFpod�/� mice) and WT littermate control
mice (6 to 8 weeks of age at the start of doxycycline use) to
drive Cre expression specifically in podocytes.

Glomerular Enrichment from Whole Kidney

iCTCFpod�/� and WT mice were sacrificed after 1 week of
doxycycline treatment, and kidneys were quickly dissected
and washed with ice-cold Hanks’ balanced salt solution
(catalog number 14170112, Thermo Scientific, Waltham,
MA). After removing the kidney capsules, glomeruli were
enriched at 4�C using the sieving technique14 with 180-mm,
75-mm and 53-mm sieves. Glomerular-enriched fractions
collected from the 53-mm sieve were rinsed with ice-cold
1� Hanks’ balanced salt solution and placed on ice.

Preparation of Single-Cell Suspensions

Glomerular-enriched fractions were centrifuged at 350 � g
for 5 minutes at room temperature. After removing most of
the Hanks’ balanced salt solution, 1 mL of liberase TH
digestion buffer (catalog number 5401135001, Sigma-
Aldrich, St. Louis, MO) that contained 50 U/mL of
DNase I (catalog number 90083, Thermo Scientific) was
added to the glomerular pellet and incubated at 37�C for 60
minutes on an orbital shaker (56 � g). The suspension was
passed through a 27-gauge needle twice after 20 minutes.
Digested glomerular fractions were added to 9 mL of RPMI
1640 medium (catalog number 11875119, Thermo Scienti-
fic) containing 10% fetal bovine serum (catalog number
16000044, Thermo Scientific) and centrifuged at 500 � g
for 5 minutes at room temperature. Then 1 mL of red blood
cell lysis buffer (catalog number A1049201, Thermo Sci-
entific) was added to the glomerular pellet and mixed for 1
minute at room temperature. Next 9 mL of RPMI 1640
medium (10% fetal bovine serum) was added, and the
suspension was centrifuged at 500 � g for 5 minutes at
room temperature. The media was removed from the pellet
and 200 mL of Accumax (catalog number 07921, Stem Cell
Technologies, Vancouver, BC, Canada) was added and
incubated for 20 minutes at 37�C. Then 1.8 mL 1�
phosphate-buffered saline (PBS) (catalog number
14190250, Thermo Scientific) plus 0.04% bovine serum
albumin (BSA) (catalog number A1933, Sigma-Aldrich)
was added, and the suspension was centrifuged at
500 � g for 8 minutes. The digested glomeruli were washed
with 750 mL of 1� PBS plus 0.04% BSA and filtered using
a 40-m Flowmi Tip Strainer (catalog number
BAH136800040, Sigma-Aldrich). Then 1.25 mL 1� PBS
ajp.amjpathol.org - The American Journal of Pathology
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plus 0.04% BSA was added, and the suspension was
centrifuged at 500 � g for 8 minutes. The pellet was
resuspended in a small volume of 1� PBS plus 0.04% BSA.

Library Preparation and Single-Cell Sequencing

Single cells were processed through the 10� Chromium 30

Single Cell Platform using the Chromium Single Cell 30

Library, Gel Bead, and Chip Kits (10� Genomics, Pleas-
anton, CA), following the manufacturer’s protocol. Briefly,
10,000 cells were added to each channel of a chip to be
partitioned into Gel Beads in Emulsion in the Chromium
instrument, followed by cell lysis and barcoded reverse
transcription of RNA in the droplets. Breaking of the
emulsion was followed by amplification, fragmentation, and
addition of adapter and sample index. Libraries were pooled
together and sequenced on Illumina HiSeq.

Hybridization Chain Reaction

All hybridization chain reaction (HCR) v3 reagents (probes,
hairpins, and buffers) were purchased from Molecular
Technologies (Pasadena, CA). Thin sections of tissue (10
m) were mounted in 24-well glass bottom plates (catalog
number 82050-898, VWR, Radnor, PA) coated with a 1:50
dilution of (3-aminopropyl)triethoxysilane (catalog number
440140, Sigma-Aldrich). The following solutions were
added to the tissue: 10% formalin (catalog number 100503-
120, VWR) for 15 minutes, two washes of 1� PBS (catalog
number AM9625, Thermo Fisher Scientific), ice-cold 70%
EtOH at �20�C for 2 hours (to overnight), three washes of
5� saline sodium citrate with 0.2% Tween-20 (SSCT)
(catalog number 15557044, Thermo Fisher Scientific), hy-
bridization buffer (Molecular Technologies) for 10 minutes,
probes in hybridization buffer overnight, four washes of
wash buffer (Molecular Technologies) for 15 minutes, three
washes of 5� SSCT, amplification buffer (Molecular
Technologies) for 10 minutes, and three washes of 15 mi-
nutes with 5� SSCT (1:10,000 DAPI, catalog number
TCA2412-5MG, VWR) in the second wash. Hairpins were
heat denatured in amplification buffer overnight. Samples
were stored and imaged in 5� SSCT. Imaging was per-
formed on a spinning disk confocal (Yokogawa W1 on
Nikon Eclipse Ti) operating NIS-elements AR software.
Image analysis and processing was performed on ImageJ
Fiji software version 2.1.0/1.53c (NIH, Bethesda, MD;
http://imagej.nih.gov/ij).

Data Processing and Quality Control

A Cellranger toolkit (version 2.1.1) was used to perform
demultiplexing using the cellranger mkfastq command and
the cellranger count command for alignment to the mouse
transcriptome, cell barcode partitioning, collapsing unique
molecular identifier (UMI) to transcripts, and gene-level
quantification. Cells were filtered to include cells expressing
The American Journal of Pathology - ajp.amjpathol.org
a minimum of 500 genes and a maximum of 4000 genes.
Furthermore, the percentage of reads mapping to mito-
chondrial genes was capped at 12%. DoubletFinder was
used to identify potential doublets.15 Clusters with >75% of
cells classified as high-confidence doublets were removed
from further analysis. The remaining cells classified as high-
confidence doublets were also removed from further anal-
ysis. The analysis involved downsampling the number of
cells to account for this difference. For example, if there
were fewer WT cells in a given cell type, a random sample
of iCTCF cells equal to the number of WT cells was used
for the differential expression analysis.

Unsupervised Clustering and Dimensionality Reduction

The default settings in the Seurat R package16 version 3.0
were used for normalization (NormalizeData) of the gene
expression counts, identifying variable genes (FindVaria-
bleGenes), finding integration anchors (FindInte-
grationAnchors), and integrating the samples
(IntegrateData). Unwanted variation occurred because of the
number of UMIs and ratio of reads mapping to mitochon-
drial genes (ScaleData). Dimensionality reduction was per-
formed using principal component analyses (RunPCA) on
the highly variable genes. The PCElbowPlot() function was
used to distinguish principal components for further anal-
ysis. For clustering all cells, the first 40 principal compo-
nents sufficiently captured all of the variance. Molecularly
distinct clusters were identified using the default parameters
(FindClusters) and a resolution of 0.4 (FindNeighbors). The
data were processed and scaled as described above after
subsetting glomerular cells. A total of 30 principal compo-
nents were used for downstream clustering at a resolution of
0.3 (FindNeighbors).

Cell Type Classification

Cluster-enriched or marker genes were computed using the
Wilcoxon rank sum test (FindAllMarkers) for differential
expression of genes in the cluster cells versus all other cells
and selecting those genes that pass the adjusted P value
(false discovery rate) cutoff of 0.05 as cluster representative.
Cluster identity was assigned by comparing data-driven
genes with a list of literature-curated genes for mature
kidney cell types.

Differential Gene Expression Analysis

Pairwise differential expression analysis in Seurat (Find-
Markers) was used with the log fold change threshold set to
0.01 and default parameters to analyze differential expres-
sion between iCTCFpod�/� and WT cells in a specific
cluster. Within FindMarkers, ident.1 was set to cluster-
specific iCTCFpod�/� cells, and ident.2 was set to the cor-
responding cluster-specific WT cells. Genes with an
adjusted P < 0.05 were considered significant.
283
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Overrepresentation Analysis

Overrepresentation analysis was used to determine whether
any known biological functions or processes were over-
represented or enriched in the list(s) of differentially
expressed genes.17 The R package clusterProfiler,18 specif-
ically the enrichGO function, was used for the over-
representation analysis. Default parameters were used, with
the exceptions of ont Z BP, pvaluecutoff Z 0.25, and
qvaluecutoff Z 0.25. The R package enrichplot (GitHub,
https://github.com/YuLab-SMU/enrichplot, last accessed
August 30, 2021) was then used, specifically the emapplot
function, to visualize the enrichment results by plotting
the top enrichment terms.

Ligand Receptor Analysis

iTALK19 was used to map receptors to ligands that were
differentially expressed in iCTCFpod�/� podocytes. Specif-
ically, rawParse was used to calculate the mean expression
of each gene, using scaled data from Seurat. FindLR using
datatype Z meancount was used to identify ligand and re-
ceptor pairs. Ligand and receptor pairs of interest were
plotted using default parameters of LRPlot. The thickness of
the lines indicates the relative mean expression of the
ligand, and the size of the arrowhead indicates the relative
mean expression of the receptor.

NicheNet Analysis

The R package NicheNet20 was used to predict ligand-
receptor interactions that might drive gene expression
changes in the cell type of interest. All podocyte clusters and
all endothelial clusters were combined for this analysis. All
default parameters were used with the exception of setting a
lower cutoff threshold of 0.11 for
prepare_ligand_target_visualization.

HCR Image Processing and Quantification

Images were processed using ImageJ2 software (NIH,
Bethesda, MD; http://imagej.nih.gov/ij). For ImageJ files,
version 2.1.0/1.53c was used (http://imagej.net/
Contributors (last accessed August 2, 2020). Raw ND2
files were background subtracted using the Rolling Ball
Figure 1 Endothelial cells are most affected by podocyte injury, as indicated
specific CTCF deletion (iCTCFpod�/�) kidneys. A: Experimental design. WT and iC
tion of Ctcf specifically in podocytes. After 1 week, kidneys were isolated, and glo
obtain a single-cell suspension that was subsequently sequenced on the 10� Gen
and Seurat. B: Uniform manifold approximation and projection (UMAP) plot of all c
C: Expression of cell typeespecific markers used for cluster identification in panel
gene in the specified cluster. WT and iCTCFpod�/� cells split into 10 clusters, w
glomerular origin that were isolated and reclustered. E: Expression of cell typeesp
glomerular cells split into 11 clusters. F: Proportion of WT or iCTCFpod�/� cells pe
genes (DEGs) in each cluster comparing iCTCFpod�/� and WT cells. Genes were defin
had a log fold change of 0.01, and had an adjusted P < 0.05. DT/CD, distal tub
zygosity; PEC, parietal endothelial cell; PT, proximal tubule; rtTA, reverse tetracy
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method (rolling Z 50 sliding stack). Mean intensities of
the Z-stack images were then projected, and image
channels were split and saved separately. CellProfiler
version 3.1.5 (Broad Institute of MIT and Harvard,
Cambridge, MA)21 was used for cell segmentation based
on the fluorescence intensity of DAPI channel and for
measuring integrated fluorescence intensity in the rest of
the channels. Four WT and four iCTCFpod�/� mice were
evaluated for statistical analysis. All glomeruli from three
40� images were quantified. A Welch-corrected two-
tailed t-test was performed.
Results

Single-Cell Profiling of >29,000 Glomerular-Enriched
Kidney Cells

Current single-cell protocols for whole kidney identify
<2.5% glomerular cells,9 and although a purified glomer-
ular preparation using magnetic beads enriches for this
population,22 it fails to capture other cell types of the kidney
that may be of interest. A sieving method was used to
simultaneously enrich glomeruli and capture additional
kidney cell types to extend these findings and develop a
detailed understanding of cell-cell interactions within the
glomerulus in the context of the entire cellular landscape of
the kidney, before and after podocyte injury.

To identify the early transcriptional effects of podocyte
ablation in a cell typeespecific manner, scRNAseq was
performed with kidney tissue from WT and iCTCFpod�/�

mice collected by serial sieving after 1 week of doxycycline
treatment (Figure 1A). Kidney tissue from four WT animals
(four biological replicates) and four iCTCFpod�/� animals
yielded a total of 14,783 WT and 14,727 iCTCFpod�/� cells
profiled after filtering (Supplemental Figure S1, A and B;
Supplemental Tables S1 and S2). Data were normalized to
remove effects due to the number of UMIs and percentage
of mitochondrial reads. After integration of WT and
iCTCFpod�/� samples, a low resolution of clustering was
used to detect nine clusters (Figure 1B). Biological repli-
cates of WT and iCTCFpod�/� samples were distributed
among all clusters (Supplemental Figure S2, A-C). All cell
types of the glomerulus, as well as additional kidney cell
types, were identified using established and data-derived
by single-cell RNA sequencing of wild-type (WT) and inducible podocyte-
TCFpod�/� mice were treated with doxycycline for 1 week to induce dele-
meruli were enriched using serial sieving. Enzymatic digestion was used to
omics platform. Downstream data analysis was performed using CellRanger
ells isolated from WT and iCTCFpod�/� glomerular-enriched kidney fractions.
A presented as a dot plot. Color represents the mean expression level of the
ith all major cell types of the kidney identified. D: UMAP plot of cells of
ecific markers used for cluster identification in panel C. WT and iCTCFpod�/�

r glomerular cell type. G: Bar plot of the number of differentially expressed
ed as differentially expressed if they were expressed in at least 10% of cells,
ule/collecting duct; GEC, glomerular endothelial cell; LOH, loss of hetero-
cline-controlled transactivator.
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markers (Figure 1C; Supplemental Table S3; Supplemental
Figure S3A).

Glomerular cells, representing a total 82.1% of all
recovered cells [36.9% podocytes, 42.1% glomerular
endothelial cells (GECs), 2.7% mesangial cells, and 0.36%
PECs] were isolated and reclustered (Figure 1D). Four
clusters of podocytes, five clusters of GECs, and one cluster
each of mesangial cells and PECs, expressing canonical
cell-type markers, were identified (Figure 1E; Supplemental
Figure S3B). Biological replicates of WT and iCTCFpod�/�

samples were distributed throughout all clusters
(Supplemental Figure S2, D-F; Supplemental Table S4). As
anticipated, given that podocyte-specific CTCF deletion
leads to histologically detectable podocyte loss at 2 weeks,13

iCTCFpod�/� samples contained a lower percentage of
podocytes than WT samples (Figure 1F; Supplemental
Table S5). iCTCFpod�/� samples had 13.1% fewer podo-
cytes, 11.9% more GECs, and 1.5% more mesangial cells
than WT samples (Supplemental Table S5). PECs contrib-
uted <1% to either of the iCTCFpod�/� or WT samples.
This finding suggests that disruption of transcriptional pro-
grams critical for podocyte survival precedes histologically
detectable podocyte injury and loss and highlights the power
of scRNAseq in discerning subtle changes that can be
missed by histologic analysis.

Podocyte-Specific Inducible CTCF Deletion Leads to
Gene Expression Changes in All Glomerular Cell Types

Differential expression analysis was performed in each of 11
clusters comparing iCTCFpod�/� and WT cells
(Supplemental Table S6). Genes were considered differen-
tially expressed if found in at least 10% of cells in a given
cluster, with a minimum absolute log fold change of 0.1 and
an adjusted P < 0.05. Ctcf was differentially expressed in
each of the four podocyte clusters, with mean log fold
changes of �0.390, �0.189, �0.331, and �0.303, respec-
tively. The numbers of cells in each cluster were down-
sampled and the differential expression analysis repeated to
compare the number of differentially expressed genes
among the 11 clusters. The podocyte clusters had the most
differentially expressed genes, followed by GEC-1 and
GEC-2 (Figure 1G). The remaining three clusters of GECs,
along with the mesangial cells and PECs, had far fewer
differentially expressed genes (Figure 1G), suggesting that
GEC-1 and GEC-2, among all glomerular clusters, were
most affected by the sequelae of CTCF deletionedriven
podocyte injury.

Disease-Associated Gene Programs Identified in
Specific Podocyte and Endothelial Cell Clusters

This study first sought to examine how the individual
podocyte clusters respond to injury. A Venn diagram of the
differentially expressed genes in each of the four podocyte
clusters revealed that podocyte 1 had the most uniquely
The American Journal of Pathology - ajp.amjpathol.org
differentially expressed genes of the four podocyte clusters
(Figure 2A; Supplemental Table S7). The observation that
one of four podocyte clusters was more prominently
affected is in agreement with prior histologic data indicating
that not all podocytes are affected with equal severity in the
face of injury and highlights the power of scRNAseq to
molecularly characterize the heterogeneity of cell states
within the same cell type.23

An overrepresentation analysis was performed to identify
gene programs enriched as a consequence of CTCF loss in
the podocyte 1 cluster (Supplemental Table S8). The top
enriched terms were visualized with an enrichment map to
cluster mutually overlapping gene sets (Figure 2B). A
prominent group of enriched terms was mitochondrial
functions, including ATP synthesis, mitochondrial organi-
zation, electron transport chain, and oxidative phosphory-
lation (Figure 2B). These data extend recent work pointing
to mitochondrial dysfunction as a sign of podocyte injury.24

In addition, human genetics have pointed to the importance
of mitochondrial functions in podocytes, including several
mutations in the CoQ biosynthesis pathway (PDSS1,
PDSS2, COQ2, COQ6, and ADCK4) that cause nephrotic
syndrome, mainly in children.25,26 It has therefore been
postulated that podocyte mitochondrial dysfunction may
represent a prominent cell state associated with all diseases
that stem from podocyte loss.24 The data provide support for
this notion at single-cell resolution, suggesting that mito-
chondrial dysfunction may represent the earliest injury state
in a specific population of podocytes, leading to podocyte
loss.

One of the main groups of enriched terms from the
overrepresentation analysis (Figure 2B) was cytoskeletal
organization as well as a related single enriched term for
cell-matrix adhesion. The actin cytoskeleton plays an
essential role in maintaining the podocytes’ unique and
complex structure, and adhesion to the GBM is essential
for podocyte function.27 Mature focal adhesions contain
hundreds of proteins that link the actin cytoskeleton, re-
ceptor matrix binding, intracellular signal transduction, and
actin polymerization. One of the most down-regulated
genes in podocyte 1 was Rhpn1 (Supplemental
Figure S4A), an essential component for establishing
podocyte cytoskeleton dynamics and maintaining podocyte
foot process architecture.28 The Arp2/3 complex compo-
nent Arpc3, a driver of actin polymerization, was up-
regulated in the podocyte 1 cluster (Figure 2C;
Supplemental Figure S4B). A gene for an additional
component of the complex, Actr2, was also up-regulated in
both podocyte 1 and podocyte 4. In addition, Wasl, whose
protein product, N-WASP, activates the Arp2/3 complex
and is required for the maintenance of podocyte foot pro-
cesses in vivo29, was also up-regulated in podocyte 1,
podocyte 3, and podocyte 4. The cytoskeletal regulator
Arhgdia, whose deletion is associated with nephrotic syn-
drome in mice,30 was down-regulated in podocyte 1
(Figure 2C). The expression levels of two Rho GTPases
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that are well established regulators of the actin cytoskel-
eton and cell adhesion dynamics31 were also altered: RhoA
was up-regulated and RhoC was down-regulated, as was a
central downstream effector of Rac1, Pak1, consistent with
a prior study.23 Furthermore, Cd2ap, a critical podocyte
actin cytoskeleton component,27,32 was up-regulated in
podocyte 1. Together, these changes suggest that one of the
earliest podocyte responses to CTCF deletionedriven
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injury is to alter critical components of the actin cyto-
skeleton in a struggle to maintain attachment to the GBM
and thus survive the injury. In addition, scRNAseq iden-
tified specific mediators of this response matched to a
specific population of podocytes, pointing to putative tar-
gets for early therapeutic intervention.
The GBM is a meshwork of extracellular matrix proteins

situated between podocytes and GECs that provides
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structural support for the glomerular capillaries, harbors
ligands for receptors on the surface of the adjacent GECs,
podocytes, and mesangial cells, and contributes to
glomerular filter selectivity.33 One of the critical compo-
nents of the GBM is collagen type IV ɑ5 (Col4a5); mu-
tations in this gene cause Alport syndrome and FSGS in
humans.33,34 Variants in Col4a3, another structural
component of the GBM, were recently identified by a
comprehensive genome-wide association study in DKD.35

Therefore, changes to GBM components as a conse-
quence of podocyte injury are broadly relevant to many
kidney diseases. Whether expression of genes encoding
structural components of the GBM were disrupted in the
model was queried. Col4a5 was up-regulated in
iCTCFpod�/� podocytes (with a log fold change of 0.130)
(Supplemental Figure S4C; Supplemental Table S6).
Ligand receptor analysis suggested that Col4a5 upregula-
tion in podocyte 1 leads to increased interactions with cells
of all five GEC clusters and mesangial cells through
several integrins (Figure 3A). The expression of Col4a5 in
Nphs2-expressing podocytes was significantly increased
(P < 0.0001; Welch-corrected two-tailed t-test)
(Figure 3B). The observed Col4a5 up-regulation, with
spatial resolution, was validated by HCR, a method that
generates single-molecule fluorescence via in situ hybrid-
ization36 (Figure 3C; Supplemental Figure S5). This result
confirmed that individual gene data derived from the
single-cell transcriptomic experiment could be indepen-
dently validated, with spatial resolution, bolstering the
validity of the conclusions drawn by computational ana-
lyses. Furthermore, these data highlight that the key
response to injury by a specific population of podocytes is
to up-regulate collagen production, which may account for
the prominent or thick GBM observed in progressive
diseases, such as DKD.35

GEC-1 and GEC-2 had nearly as many differentially
expressed genes as podocyte clusters 2 to 4, whereas the
remainingGEC clusters, mesangial cells, and PECs had fewer
differentially expressed genes. Therefore, these two endo-
thelial clusters weremost affected by podocyte injury. GEC-1
expressed >600 uniquely differentially expressed genes
(Supplemental Figure S6A; Supplemental Table S9). Over-
representation analysis indicated that the uniquely differen-
tially expressed genes in GEC-1 were enriched in gene
programs for cell migration and adhesion (Supplemental
Figure S6, B and C; Supplemental Table S10). These ana-
lyses revealed the earliest transcriptional changes that occur in
GECs as a response to podocyte injury.

Modeling Intercellular Communication Reveals Key
Interactions between Cell Types in Response to Early
Podocyte Injury

Having identified disrupted gene programs in several
distinct cell clusters, the study next sought to understand
how glomerular cell-cell crosstalk was influenced by
The American Journal of Pathology - ajp.amjpathol.org
podocyte injury. The study first probed the list of differen-
tially expressed genes in podocyte, GEC, and mesangial cell
clusters. The expression of two key autocrine prosurvival
ligands, Vegfa and Pdgfb, as well as the expression of the
PDGFB receptor, Pdgfrb, were disrupted (Supplemental
Table S6). Vegfa expression was decreased in all podocyte
clusters (mean log fold change between �0.034 and
�0.149). In contrast, Pdgfb expression was increased in all
GEC clusters (mean log fold change between 0.031 and
0.140), and the receptor Pdgfrb was up-regulated in
mesangial cells (mean log fold change of 0.155). This
analysis suggested that podocyte injury leads to decreased
expression of the prosurvival ligand Vegfa, negatively
affecting GECs. To compensate, GECs may up-regulate the
prosurvival ligand Pdgfb, triggering mesangial cells to up-
regulate the receptor Pdgfrb.

NicheNet, a novel algorithm that infers how ligand-
receptor interactions derived from expression data may
affect specific targets by integrating preexisting knowledge
of signaling and regulatory networks, was used to more
deeply investigate ligand-receptor interactions and their
putative target genes.20 NicheNet was applied to model in-
teractions between podocytes and GECs as well as mesan-
gial cells and GECs that could potentially induce
differentially expressed genes (target genes) in GECs in the
setting of podocyte injury (Figure 4A). For this analysis, all
clusters of each cell type were combined into a single
cluster. The top predicted ligands expressed by mesangial
cells and/or podocytes were pleiotrophin (Ptn), angiopoietin
2 (Angpt2), Col4a1, vascular cell adhesion molecule 1, bone
morphogenetic protein 4 (Bmp4), Ephrin B1, connective
tissue growth factor, and semaphoring 3e (Sema3e)
(Figure 4B). The expression pattern of GEC receptors
through which these ligands are known to act were mapped
next to the ligand activity analysis. In addition, the predicted
target genes that were differentially expressed in
iCTCFpod�/� GECs compared with WT controls were also
mapped. The results in Figure 4B are summarized as cir-
cular plots in Figure 4, C and D.

Several ligands, receptors, and target genes were notable
from this analysis. Pleiotrophin, a ligand highly expressed in
mesangial cells (Figure 4B), is a secreted growth factor that
can bind and inhibit protein tyrosine phosphatase receptor
type B, stimulating endothelial cell migration via increased
Tek (Tie2)/Angpt137 and Kdr (Vegfr2)/Vegfa38 signaling.
Accordingly, Tek was significantly up-regulated in GECs
(Figure 4B). Angpt2, highly expressed in mesangial cells, is
an antagonistic ligand of Tek, inhibiting the binding of
Angpt1.39 Because Angpt1 signaling is known to promote
podocyte survival and a disruption of the Angpt1/Angpt2
ratio contributes to the development of DKD,40 this ligand-
receptor analysis appeared to point to maladaptive Tek
signaling in GECs as one of the earliest consequences of
podocyte injury.

This study also found prominent changes in type IV
collagen expression in several glomerular cells (Figure 4B).
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Normally produced by healthy podocytes, collagen IV het-
erotrimers transition from ɑ1ɑ1ɑ2 to ɑ3ɑ4ɑ5 during
glomerular development, which is necessary for proper
GBM formation and function.33,34 Up-regulation of Col4a1,
along with expansion of the mesangial matrix, is frequently
observed in DKD.41,42 In the current analysis, Col4a1 was
expressed by both mesangial cells and GECs (mean
expression of ligand heatmap) (Figure 4B) and was specif-
ically up-regulated in iCTCFpod�/� GECs compared with
WT controls. These data suggest that GECs up-regulate
Col4a1 in the setting of podocyte injury, which may lead
to a stiffer, fibrotic GBM that contributes to the develop-
ment of segmental sclerosis.33

Bmp4 was a highly expressed mesangial ligand identified
by NicheNet analysis (Figure 4, B-D). BMPs play key roles
in kidney development and disease.43 Bmp4 is up-regulated
in the setting of diabetic nephropathy in rats,42 and treat-
ment of mice with diabetes with an anti-BMP4 antibody
prevents the up-regulation of Col4a1 and mesangial matrix
expansion.44 Of particular interest, mesangial Bmp4 was
found to trigger GEC Smad6 expression (Figure 4B).
Expression of Smad6 is induced by BMPs and in a negative-
feedback loop, Smad6 specifically inhibits BMPs, including
BMP4.45 Smad6 was down-regulated in iCTCFpod�/� GECs
compared with WT controls, suggesting increased BMP
signaling in endothelial cells in the setting of podocyte
injury.

One of the prioritized ligands identified in podocytes was
Sema3e (Figure 4, B-D). Class 3 semaphorins are secreted
proteins that function in a variety of biological processes,
including angiogenesis, lymphangiogenesis, and disease.46

Sema3a is up-regulated in human DKD,47 and Sema3g
was recently identified as a podocyte-specific gene that
protects podocytes from inflammation in vivo.48 The role of
Sema3e in the podocyte remains unclear. The current
analysis revealed a previously unrecognized receptor-ligand
pair whereby podocyte Sema3e interacts with plexinD1 on
GECs to trigger several downstream gene targets in the
setting of podocyte injury (Figure 4, C and D).

Among several newly identified GEC target genes, Hes1
and Cx3cl1 were also found in the adhesion gene programs
enriched in GEC-1 (Figure 4, B-D; Supplemental
Figure S6). Hes1 is a target of Notch signaling, which
plays an important role in the developing kidney, but
reactivation can lead to fibrosis.49 Cx3cl1 is a chemokine
mainly produced by glomerular endothelium that acts as a
Figure 4 NicheNet analysis reveals ligands, receptors, and target genes that c
as a consequence of podocytes injury. A: Model for the NicheNet analysis. Potent
GECs were defined as differentially expressed [compared with wild-type (WT) GEC
0.1, and had an adjusted P < 0.05. Potential ligand-receptor pairs that lead to
Results of the NicheNet analysis. Ligands expressed in mesangial cells and/or p
expression changes in GECs. Receptors, expressed in GECs, were selected based
target genes were selected based on their differential expression in GECs and th
between GECS-podocytes and GECsemesangial cells. C: Summary of the ligand-re
interactions identified in panel B.
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chemoattractant and adhesion molecule for its receptor,
Cx3cr1, which is ubiquitously expressed on mononuclear
and circulatory lymphatic leukocytes.50 Cx3cl1 has been
implicated in a variety of kidney diseases, including DKD,
IgA nephropathy, and glomerulonephritis.50 Hes1 and
Cx3cl1 were both up-regulated in iCTCFpod�/� GECs
compared with WT controls, suggesting that GECs respond
to podocyte injury by up-regulating proinflammatory and
profibrosis programs.

Finally, because many of the ligands and targets identi-
fied in the NicheNet analysis are implicated in DKD, in both
rodent models as well as humans, the data set was compared
with a single nuclei transcriptomic data set of early human
DKD.10 A specific comparison was made of differentially
expressed genes between human and mouse cell clusters. Of
the 138 differentially expressed genes in human DKD
GECs, 25 genes were also identified in mouse iCTCFpod�/�

endothelial cells, including Col4a1 (Supplemental
Figure S7; Supplemental Table S11). Together, these re-
sults suggest that endothelial cell programs frequently dis-
rupted in human DKD can be partially recapitulated in the
mouse model of early glomerular injury via selective
podocyte ablation. In addition, these results suggest that, in
addition to podocytes, there may be potential endothelial-
specific targets and therapeutic strategies to halt or slow
the progression of complex and highly prevalent kidney
diseases, such as DKD.
Discussion

Podocyte dysfunction and loss are the cause of many pro-
gressive kidney diseases. This study used scRNAseq to
dissect the transcriptional networks and cellular crosstalk in
the glomerular compartment shortly after induction of se-
lective podocyte injury. The study took advantage of a
mouse model of iCTCFpod�/� at 1 week after induction to
generate a single-cell map of the kidney filter at the earliest
stages of podocyte injury. This comprehensive study of
glomerular cells, the first to evaluate the effects of a specific
and selective genetic perturbation, has revealed four
important insights about the kidney filter in health and
disease.

First, scRNAseq was performed after 1 week of doxy-
cycline treatment to induce CTCF deletion in iCTCFpod�/�

animals to detect the earliest transcriptional changes that
ontribute to transcriptional changes in glomerular endothelial cells (GECs)
ial target genes for inducible podocyte-specific CTCF deletion (iCTCFpod�/�)
s] if they were expressed in at least 10% of cells, had a log fold change of
differentially expressed genes in iCTCFpod�/� GECs were then identified. B:
odocytes were ranked by the likelihood that the ligand would affect gene
on their known potential to interact with the prioritized ligands. Finally,
eir potential to be regulated by the ligand-receptor interactions identified
ceptor interactions identified in panel B. D: Summary of the ligand-target
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occur after podocyte injury. Although podocyte quantifica-
tion by image analysis revealed a statistical difference in the
number of podocytes in WT and iCTCFpod�/� glomeruli
after 2 weeks of doxycycline treatment,13 a reduction of
podocytes in iCTCFpod�/� glomeruli was observed even
after 1 week of doxycycline induction. This finding suggests
that disruption of transcriptional programs critical for
podocyte survival precedes histologically detectable podo-
cyte injury and loss and highlights the power of scRNAseq
in discerning subtle changes that can be missed by histo-
logic analysis. At a high level, this finding suggests that
efforts to develop podocyte-protective therapies should
focus on preventing podocyte injury as early as possible
during the disease.

Second, enriching for glomeruli from whole kidneys
using the sieving method was used to increase the propor-
tion of isolated glomerular cells that were recovered,
including a rare population of PECs that have not been
captured in previous scRNAseq studies.9,22,51 In addition,
all major cell types of the kidney were identified. This
identification provides the opportunity for future studies to
evaluate transcriptional changes driven by podocyte injury
in the entire kidney, which will deepen understanding of
kidney-wide transcriptional events that lead to the progres-
sion of CKD.

Third, the data suggest that the iCTCFpod�/� mouse
model recapitulates many aspects of human disease at the
transcriptional level, including differential expression of
genes critical for podocyte adherence to the GBM and
autocrine prosurvival ligands. Because adherence of podo-
cytes to the GBM is critical for their function, the up-
regulation of Col4a5 and other genes in cell adhesion
gene programs support a model whereby podocytes respond
to initial injury by increasing adherence to the GBM.
Human mutations in podocyte focal adhesion genes,
including actin cytoskeleton genes, type IV collagen, and
integrins, have all been implicated in FSGS and/or nephrotic
syndrome.52,53 Furthermore, ligand-receptor analysis
revealed that signaling molecules implicated in human DKD
are also disrupted in the CTCF mouse model (eg, BMP4 and
Col4a1).41,42,44 We also observed the dysregulation of two
key autocrine prosurvival ligands, Vegfa and Pdgfb, whose
roles have been well established in vitro and in vivo, and
alterations in their expression and/or activity have been
associated with human kidney diseases, such as thrombotic
microangiopathies and DKD.54 Specifically, anti-VEGF
therapy, a common cancer treatment, leads to renal throm-
botic microangiopathy,55 and Pdgfb expression is increased
in human kidney biopsy samples of patients with DKD and
mesangial proliferative glomerulonephritis.56e58 Taken
together, these data support the notion that the iCTCFpod�/�

mouse model may offer a reasonably faithful transcriptional
profile of early glomerular changes with relevance to several
human kidney diseases.

The detailed modeling of ligand-receptor-target gene in-
teractions in all glomerular cells after podocyte injury led to
292
several key observations with important therapeutic impli-
cations. GECs were most affected by podocyte injury,
consistent with the physical proximity between the two cell
types. This result emphasizes the importance of moving
beyond reductionist studies that focus on one cell type alone
by understanding intercellular communication patterns to
gain deeper insights into mechanisms of kidney disease
progression. The integrated analysis revealed several pre-
viously unrecognized molecules in GECs, such as BMP4
and PlexinD1, and in podocytes, such as Sema3E, that may
be further explored for their potential to be targeted for
therapeutic benefit. In this context, the detailed single-cell
map of the mouse glomerulus after early podocyte injury
generated in this study, made openly available to all in-
vestigators, may be used to generate hypotheses about
actionable targets for much needed therapies.
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