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Spatial transcriptomics technologies profile gene expression in 
parallel across hundreds or thousands of genes across spatial 
measurement units, or pixels1–7. These technologies have the 

potential to associate gene expression with cellular contexts such as 
spatial position, proximity to pathology or cell-to-cell interactions. 
Studying gene expression changes, termed differential expression 
(DE, that is, differentially expressed genes), within tissue context 
has the potential to provide insight into principles of organization 
of complex tissues and disorganization in disease and pathology1,8,9.

Current methods for addressing DE in spatial transcriptomics 
fall into two categories: nonparametric and parametric methods. 
Nonparametric DE methods10–12 do not use constrained hypoth-
eses about gene expression patterns, but rather fit general smooth 
spatial patterns of gene expression. Some of these approaches do 
not take cell types into account10, while others operate on individual 
cell types12. Discovering nonparametric differential gene expression 
can be advantageous to generate diverse exploratory hypotheses. 
However, if covariates are available, for example, predefined ana-
tomical regions, parametric approaches increase statistical power 
substantially and provide directly interpretable parameter esti-
mates. Specific DE problems have been addressed with ad hoc solu-
tions such as detecting gene expression dependent on cell-to-cell 
colocalization13 or anatomical regions14, but no general parametric 
framework is currently available. In contrast, general parametric 
frameworks have been widely applied across bulk and single-cell 
RNA-sequencing (scRNA-seq) to test for differences in gene 
expression across cell type, disease state and developmental state, 
among other problems15,16. Furthermore, although multi-sample, 
multi-replicate DE methods exist for bulk and scRNA-seq15,16, 
no statistical framework accounting for technical and biological 

variation17 across samples and replicates has been established for 
the spatial setting. We refer to samples as spatial transcriptomics 
experiments that differ in biological conditions (for example, dif-
ferent biological individuals or conditions), whereas replicates are 
used to describe repeat experiments across identical conditions and 
biological samples.

An important challenge unaddressed by current spatial tran-
scriptomics DE methods is accounting for observations gener-
ated from cell type mixtures. In particular, sequencing-based, 
RNA-capture spatial transcriptomics technologies, such as Visium5, 
GeoMx6 and Slide-seq1,2, can capture multiple cell types on indi-
vidual measurement pixels. The presence of cell type mixtures 
complicates the estimation of cell type-specific DE (that is, DE 
within a cell type of interest) because different cell types have dif-
ferent gene expression profiles, independent of spatial location18,19. 
Although imaging-based spatial transcriptomics technologies, such 
as MERFISH3, ExSeq7 and STARmap4, have the potential to achieve 
single-cell resolution, these technologies may encounter mixing 
across cell types due to diffusion or imperfect cellular segmenta-
tion20. Several methods18,21–23 have been developed to identify cell 
type proportions in spatial transcriptomics datasets. However, at 
present no method accounts for cell type proportions in DE anal-
ysis. Here, we demonstrate how not accounting for cell type pro-
portions leads to biased estimates of differential gene expression  
due to cell type proportion changes or contamination from other 
cell types.

In this work, we introduce cell type-specific inference of DE 
(C-SIDE), a general parametric statistical method that estimates 
cell type-specific DE in the context of cell type mixtures. The first 
step is to estimate cell type proportions on each pixel using a cell 
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type-annotated scRNA-seq reference18. Next, we fit a parametric 
model, using predefined covariates such as spatial location or cel-
lular microenvironment, that accounts for cell type differences to 
obtain cell type-specific DE estimates and corresponding standard 
errors. The model accounts for sampling noise, gene-specific over-
dispersion, multiple hypothesis testing and platform effects between 
the scRNA-seq reference and the spatial data. Furthermore, the 
C-SIDE model permits statistical inference across multiple experi-
mental samples and/or replicates to achieve more stable estimates of 
population-level differential gene expression.

Using simulated and real spatial transcriptomics data, we show 
C-SIDE accurately estimates cell type-specific DE while controlling 
for changes in cell type proportions and contamination from other 
cell types. We also demonstrate how cell type mixture modeling 
increases power, especially when single-cell type measurements 
are rare. Furthermore, on Slide-seq, MERFISH and Visium datas-
ets, we demonstrate how C-SIDE’s general parametric framework 
enables testing differential gene expression for diverse hypothe-
ses including spatial position or anatomical regions24, cell-to-cell 
interactions, cellular environment or proximity to pathology. By 
associating gene expression changes with particular cell types, we 
use C-SIDE to systematically link gene expression changes to cel-
lular context in pathological tissues such as Alzheimer’s disease 
and cancer.

Results
C-SIDE learns cell type-specific DE in spatial transcriptomics. 
Here, we develop C-SIDE, a statistical method for determining DE 
in spatial transcriptomics datasets (Fig. 1a). C-SIDE inputs one or 
more experimental samples of spatial transcriptomics data, consist-
ing of Yi,j,g as the observed RNA counts for pixel i, gene j and experi-
mental sample g. We then assume Poisson sampling so that

Yi,j,g|λi,j,g ≈ Poisson(Ni,gλi,j,g), (1)

with λi,j,g the expected count and Ni,g the total transcript count (for 
example, total unique molecular identifiers, UMIs) for pixel i on 
experimental sample g. Accounting for platform effects and other 
sources of technical and natural variability, we assume λi,j,g is a mix-
ture of K cell type expression profiles, defined by,

log(λi,j,g) = log
( K∑

k=1
βi,k,gμi,k,j,g

)
+ γj,g + εi,j,g, (2)

with μi,k,j,g the cell type-specific expected gene expression rate for 
pixel i, gene j, experimental sample g and cell type k; βi,k,g the propor-
tion of cell type k contained in pixel i for experimental sample g; γj,g 
a gene-specific random effect that accounts for platform variability 
and εi,j,g a random effect to account for gene-specific overdispersion.

To account for cell type-specific DE, we model across pixel 
locations the log of the cell type-specific profiles μi,k,j,g as a linear 
combination of L covariates used to explain DE. Specifically, we 
assume that,

log(μi,k,j,g) = α0,k,j,g +

L∑

ℓ=1
xi,ℓ,gαℓ,k,j,g. (3)

Here, α0,k,j,g represents the intercept term for gene j and cell type k 
in sample g, and xi,ℓ,g represents the ℓth covariate, evaluated at pixel 
i in sample g. Similar to linear and generalized linear models25, x, 
also called the design matrix, represents predefined covariate(s) 
that explain DE and the corresponding coefficient(s) αℓ,k,j,g each 
represent the DE effect size of covariate ℓ for gene j in cell type k  
for sample g.

With this general framework we can describe any type of DE  
that can be parameterized with a log-linear model. Examples 
include (Fig. 1b):
	(1)	 DE between multiple regions. In this case, the tissue is manu-

ally segmented into multiple regions (for example, nodular and 
anterior cerebellum, Fig. 3). Design matrix x contains discrete 
categorical indicator variables representing membership in two 
or greater regions.

	(2)	 DE due to cellular environment or state (a special case of step 
(1)). Pixels are discretely classified into local environments 
based on the surrounding cells (for example, stages in the testes 
Slide-seq dataset, Fig. 4).

	(3)	 DE as a function of distance to a specific anatomical feature. In 
this case, x is defined as the spatial position or distance to some 
feature (for example, distance to midline in the hypothalamus 
MERFISH dataset, Fig. 4).

	(4)	 Cell-to-cell interactions. In this case, we define a cell-to-cell in-
teraction as DE within one cell type (A) due to colocalization 
with a second cell type (B) (for example, immune cell density in 
cancer, Fig. 6). For this problem, x is the continuous density of 
cell type B.

	(5)	 Proximity to pathology. Similar to step (4), except covariate x 
represents density of a pathological feature (for example, Alz-
heimer’s Aβ plaque, Fig. 4), rather than cell type density.

	(6)	 General spatial patterns (termed nonparametric). In this case, 
we define design matrix x to be smooth basis functions26, where 
linear combinations of these basis functions represent the over-
all smooth gene expression function and can accommodate any 
smooth spatial pattern.

To estimate this complex model with a computationally tractable 
algorithm, in the first step, we assume μi,k,j,g does not vary with i 
and g and estimate β using a previously published algorithm18. This 
assumption does not substantially affect cell type proportion esti-
mates because the gene expression variability across cell types is 
large relative to the variability across space, for most genes. Some 
pixels are identified as single cell types while others as mixtures of 
multiple cell types. Fixing the β estimates, we next use maximum 
likelihood estimation to estimate the cell type-specific DE coef-
ficients α with corresponding standard errors, allowing for false 
discovery rate (FDR)-controlled hypotheses testing (Methods). 
Last, C-SIDE performs statistical inference across multiple rep-
licates and/or samples to estimate consensus population-level DE 
(Methods and Supplementary Fig. 1).

Because ground truth cell type-specific DE is unknown in spatial 
transcriptomics data, we first benchmarked C-SIDE’s performance 
on a simulated spatial transcriptomics dataset in which gene expres-
sion varied across two regions. Considering the challenging situation 
where two cell types, termed cell type A and cell type B, are colocal-
ized on pixels within a tissue, we simulated, using a single-nucleus 
RNA-seq cerebellum dataset, spatial transcriptomics mixture pixels 
with known proportions of single cells from two cell types known 
to spatially colocalize27 (Methods and Fig. 2a). Across two spatially 
defined regions, we varied both the true cell type-specific gene 
expression of cell types A and B as well as the average cell type pro-
portions of cell types A and B (Fig. 2a and Supplementary Fig. 2). We 
compared C-SIDE against three alternative methods (Methods): bulk, 
bulk DE (ignoring cell type); single, single-cell DE that approximates 
each cell type mixture as a single cell type and decompose18, a method 
that decomposes mixtures into single cell types before computing 
DE. By varying cell type frequencies between the two regions without 
introducing DE, we observed that C-SIDE correctly attributes gene 
expression differences across regions to differences in cell type pro-
portions rather than spatial DE (Fig. 2b and Supplementary Fig. 2); in 
contrast, the bulk method incorrectly predicts spatial DE since it does 
not control for differences of cell type proportions across regions.
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Next, we simulated cell type-specific DE by varying the DE 
in cell type A while keeping cell type B constant across regions. 
Background DE in cell type A contaminated estimates of DE in 
cell type B for all three alternative models: bulk, decompose and 
single (Fig. 2c and Supplementary Fig. 2). In particular, decompose  

assigns gene expression to cell types for each pixel independently 
but does not have information to distinguish which cell type is 
responsible for DE in mixture pixels. In contrast, C-SIDE’s joint 
model of cell type mixtures and cell type-specific DE correctly iden-
tified DE in cell type A, but not cell type B. Next, we verified that, 
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types to the spatial transcriptomics dataset, and covariates are defined. Bottom, C-SIDE estimates cell type-specific gene expression along the covariate 
axes. b, Example covariates for explaining DE with C-SIDE. Top, segmentation into multiple regions, continuous distance from some feature or general 
smooth patterns (nonparametric). Bottom, density of interaction with another cell type or pathological feature or a discrete covariate representing the 
cellular microenvironment.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Articles NAtuRE MEtHoDS

under the null hypothesis of zero DE, C-SIDE’s false-positive rate 
was accurately controlled, standard errors were accurately estimated 
and confidence intervals contained the ground truth DE (Fig. 2d 
and Supplementary Fig. 2). Finally, when nonzero DE was simu-
lated, C-SIDE achieved unbiased estimation of cell type-specific 
DE (Fig. 2e). We also found that the power, false-positive rate and 
true-positive rate of C-SIDE depends on gene expression level, 
number of cells and DE magnitude (Supplementary Fig. 2). Last, 
on Slide-seq, MERFISH and Visium spatial transcriptomics data,  
we verified that C-SIDE’s fitted Poisson-lognormal distribution 

accurately fits the empirical spatial transcriptomics gene expres-
sion distribution (Supplementary Figs. 3–5). Thus, our simulations 
validate C-SIDE’s ability to accurately estimate and test for cell 
type-specific DE in the cases of asymmetric cell type proportions 
and contamination from other cell types.

To validate C-SIDE’s ability to discover cell type-specific DE 
on spatial transcriptomics data, we collected Slide-seq V2 data2 
(including one replicate sourced from a previous study18) for three 
cerebellum replicates. We identified a spatial map of cell types  
(Fig. 3a), previously shown to correspond to known cerebellum 
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spatial architecture18. We used discrete localization in the anterior 
lobule or nodulus regions (Fig. 3b), a known axis of spatial gene 
expression variation within the cerebellum27, as a covariate for esti-
mating cell type-specific DE across regions using C-SIDE (Fig. 3c, 
Supplementary Fig. 6 and Supplementary Table 1). As experimen-
tal validation, we performed hybridization chain reaction (HCR) 
on four genes identified by C-SIDE to be DE in specific cell types, 
and we observed high correspondence between C-SIDE’s esti-
mates of cell type-specific DE and DE measurements from HCR 
data (Fig. 3d, R2 = 0.89). For example, we examined Aldoc and 
Plcb4, two genes expressed in both Purkinje and Bergmann cell 
types, which are known to spatially colocalize in the cerebellum 
and appear as mixtures on Slide-seq pixels18. C-SIDE determined 
that both Aldoc (log2 fold-change −4.24, P < 10−8) and Plcb4 (log2 
fold-change 1.93, P < 10−8) were DE in the Purkinje cell type, but 
not the Bergmann cell type. Similarly, HCR images of Aldoc and 
Plcb4 showed substantial DE within Purkinje cells across the nodu-
lus and anterior lobule, whereas expression within Bergmann cells 
was relatively even across regions (Fig. 3d,e). Next, we used C-SIDE 
to obtain cell subtype-specific DE estimates. Except for one gene, 
cell type-specific spatial DE did not differ significantly between a 
cell type and its subtypes. Furthermore, due to reduced sample size, 
C-SIDE had reduced statistical power to detect subtype-specific DE 
(Supplementary Fig. 7). We conclude that C-SIDE can successfully 
identify cell type-specific spatial DE in spatial transcriptomics tis-
sues, even when multiple cell types are spatially colocalized.

C-SIDE solves diverse DE problems in spatial transcriptomics. 
We next explored the effect of discrete cellular microenvironments 
on cell type-specific DE in the mouse testes Slide-seq dataset9. 
C-SIDE’s testes principal cell type assignments (Fig. 4a) revealed 
tubular structures corresponding to cross-sectional sampling of 
seminiferous tubules. Individual tubules have distinct stages of 
spermatogonia development, grouped into four classes of stages 
I–III, IV–VI, VII–VIII and IX–XII, which were determined from 
the previous testes Slide-seq study9 (Fig. 4b). We applied C-SIDE to 
identify genes that were DE, for each cell type, across tubule stages 
(Supplementary Table 2). C-SIDE identified genes expressed in 
a single tubule stage within a single cell type (Fig. 4c), which are 
known drivers of cellular development across stages9. For instance, 
the gene Tnp1 was identified by C-SIDE as upregulated in the  
IX–XII stage within the elongating spermatid cell type, in agree-
ment with the known biological role of Tnp1 in nuclear remodeling 
of elongating spermatids at the late tubule stage28 (Supplementary 
Fig. 8). Furthermore, most C-SIDE-identified stage-specific genes 
followed cyclic patterns, consistent with previously characterized 
seminiferous epithelial cycle29 (Supplementary Fig. 8).

Next, we evaluated C-SIDE’s ability to identify DE for cell types 
that primarily appear as mixtures with other cell types, particu-
larly the spermatocyte (SPC) cell type. According to C-SIDE cell 
type assignments, SPC frequently comixes with the ES and round 
spermatid cell types, consistent with previous histological stud-
ies30 (Supplementary Fig. 8a). By using cell type mixtures, C-SIDE 
obtained increased power for identifying DE genes compared to a 
method only using single-cell type pixels (Supplementary Notes 
and Supplementary Fig. 8b,c), especially for SPC cell type (217 sig-
nificant SPC DE genes discovered by C-SIDE versus 1 DE gene for 
the single-cell method). For most SPC DE genes, including Prss40 
(log2 fold-change 1.72, P = 8 × 10−5) and Snx3 (log2 fold-change 
1.17, P < 10−8), pixels containing SPC but not spermatids were 
too rare to determine DE (Fig. 4d). Instead, C-SIDE determined 
DE specifically in SPC cells by detecting significant spatial differ-
ences among pixels containing both SPC and spermatid cell types, 
but not within pure spermatid pixels. Therefore, C-SIDE’s cell 
type mixture modeling uniquely enables DE discovery in highly  
mixed cell types.

Aβ plaque-dependent DE in Alzheimer’s disease. We next 
explored pathological staining, in particular Aβ plaques, as a con-
tinuous covariate for cell type-specific gene expression changes. 
We performed Slide-seq V2 on the hippocampal region of a 
genetic mouse model of amyloidosis in Alzheimer’s disease31 (J20, 
n = 4 slices, Methods). C-SIDE’s cell type assignments (Fig. 4e) 
were consistent with past characterizations of hippocampus cel-
lular localization18. We collected paired Aβ plaque staining images 
(Anti-Human Aβ Mouse IgG antibody, Methods) to quantify Aβ 
plaque density as a covariate for C-SIDE (Fig. 4f and Supplementary 
Fig. 10). We then used C-SIDE to identify genes whose expres-
sion depended in a cell type-specific manner on plaque density 
(Fig. 4g and Supplementary Table 6). For instance, in astrocytes 
colocalizing with Aβ plaque, C-SIDE detected upregulation of 
Gfap (Fig. 4h and Supplementary Fig. 10, log2 fold-change 1.35, 
P < 10−8), consistent with Gfap’s known role in Aβ plaque attenu-
ation32 and the C4b complement gene (log2 fold-change = . 85, 
P = 1 × 10−4), which is involved in plaque-associated synaptic 
pruning in Alzheimer’s disease33–35. Moreover, several cathep-
sin proteases including Ctsb (log2 fold-change 1.65, P < 10−8), 
Ctsd (log2 fold-change 1.30, P < 10−8) Ctsl (log2 fold-change 1.96, 
P = 4 × 10−6) and Ctsz (log2 fold-change 1.11, P = 3 × 10−4) were 
determined to be differentially upregulated in microglia around 
plaque, consistent with the role of cathepsins in amyloid degrada-
tion36 (Supplementary Fig. 10). In microglia, we also identified 
known homeostatic microglia markers37,38 including P2ry12 (log2 
fold-change −1.33, P < 10−8) and Cx3cr1 (log2 fold-change −0.68, 

Fig. 4 | C-SIDE discovers cell type-specific DE in a diverse set of problems on testes, Alzheimer’s hippocampus and hypothalamus datasets. All panels 
show results of C-SIDE on the Slide-seqV2 testes (left column), MERFISH hypothalamus (middle column) and Slide-seqV2 Alzheimer’s hippocampus (right 
column). Schematics in b,f,j reference C-SIDE problem types (Fig. 1b). a, C-SIDE’s spatial map of cell type assignments in testes. All cell types are shown 
with most common in legend. b, Covariate used for C-SIDE in testes: four discrete tubule stages. c, Cell type and tubule stage-specific genes identified by 
C-SIDE. C-SIDE estimated expression is standardized between 0 and 1 for each gene. Columns represent C-SIDE estimates for each cell type and tubule 
stage. d, The log2 average expression (in counts per 500 (CP500)) of pixels grouped based on tubule stage and presence or absence of spermatid (S) cell 
types (defined as elongating spermatid (ES) or round spermatid (RS)) and/or SPC cell type. Circles represent raw data averages while triangles represent 
C-SIDE predictions, and error bars around circular points represent ±1.96 s.d. (37 ≤ n ≤ 2,236 pixels per group, Supplementary Notes). Genes Prss40 and 
Snx3 are shown on left and right, respectively. e, Same as a for Alzheimer’s hippocampus (n = 4 replicates). f, Covariate used for C-SIDE in Alzheimer’s 
hippocampus: continuous density of Aβ plaque. g, Volcano plot of C-SIDE DE results in log2 space, with positive values corresponding to plaque-upregulated 
genes. Color represents cell type, and a subset of significant genes is labeled. Dotted lines represent 1.5× fold-change cutoff used for C-SIDE. h, Spatial 
visualization of Gfap, identified by C-SIDE as DE in astrocytes. Red/blue represents high/low plaque density areas, respectively. Bold points represent 
astrocytes expressing Gfap at least 1 CP500. i, Same as a for hypothalamus. j, Covariate used for C-SIDE in hypothalamus, midline distance. k, The log2 
average expression (CP500) of C-SIDE significant DE genes for excitatory, inhibitory and mature oligodendrocyte cell types. Single cell type pixels are 
binned by midline distance, and points represent raw data averages while lines represent C-SIDE predictions and error bars around points represent ± 1.96 
s.d. (34 ≤ n ≤ 411 pixels per group) (Supplementary Notes). l, Spatial visualization of Slc18a2, identified by C-SIDE as DE in inhibitory neurons. Red/blue 
represents close/far to midline, respectively. Bold points are inhibitory neurons expressing Slc18a2 at least ten CP500. All scale bars, 250 μm.
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P = 3 × 10−4) as downregulated in the presence of plaque. Apoe, 
known to have Aβ plaque-dependent upregulation within microg-
lia39, was also detected (log2 fold-change 1.58, P < 10−8). Finally, 
the anti-inflammatory gene Grn was upregulated in microglia 
near plaque (log2 fold-change 0.79, P = 6 × 10−4), consistent with 
previous knowledge40.

Spatial gene expression changes in imaging-based transcriptomics. 
We next applied C-SIDE across different spatial technology length 
scales, from near single-cell resolution imaging-based spatial tran-
scriptomics (for example, MERFISH) to lower-resolution tech-
nologies such as Visium. First, we applied C-SIDE to a MERFISH 
mouse hypothalamus dataset. During development, hypothalamic 
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progenitors create radial projections out from the hypothalamic 
midline, which are used as scaffolds for the migration of differen-
tiating daughter cells41. Thus, we investigated radial distance to the 
hypothalamus midline as a predictor of DE in hypothalamus cell 
types. C-SIDE’s assigned cell types were consistent with the previ-
ous MERFISH hypothalamus study8 (Fig. 4i). Although most pixels 
were single cell types, a nonnegligible proportion (12.6% double 
cell type pixels out of n = 3,790 total pixels) were mixtures of mul-
tiple cell types. Using midline distance as a covariate for C-SIDE 
(Fig. 4j), we detected genes in hypothalamus excitatory, inhibitory 
and mature oligodendrocyte cell types whose expression depended 
either linearly or quadratically on distance from the midline (Fig. 4k 
and Supplementary Tables 3 and 4). For instance, Slc18a2 (Fig. 4l), 
identified as upregulated within inhibitory neurons near the mid-
line (log2 fold-change 6.14, P < 10−8), is required for dopaminergic 
function in certain inhibitory neuronal subtypes42, which are known 
to localize near the hypothalamus midline8. Next, we used C-SIDE 
to address the known challenging problem of cellular segmentation 
in imaging transcriptomics20. Since C-SIDE can operate on both cell 
type mixtures and single cells, we hypothesized that cell segmenta-
tion could be skipped altogether and replaced by defining pixels as a 
fixed grid (Fig. 5a). Indeed, skipping segmentation did not substan-
tially change C-SIDE DE estimates (Fig. 5b) and reduced C-SIDE 
uncertainty (Supplementary Fig. 9) due to an inclusion of more 
counts that would be discarded during segmentation.

DE discovery in lower-resolution spatial transcriptomics. We next 
tested whether C-SIDE on a Visium human lymph node dataset, 
with spot size 55 μm (ref. 43), resulting in a higher degree of cell type 
mixtures. By using B cell proportion as the C-SIDE covariate, we 
tested for gene expression changes within the B cell-rich germinal 
centers, essential regions for B cell maturation. We note consistency 
between B cell-rich regions and germinal center morphology from 
histology (Fig. 5c). C-SIDE identified germinal center-driven DE 
(Fig. 5d, Supplementary Fig. 9 and Supplementary Table 5), such 
as correctly identifying germinal center B cell markers, includ-
ing RGS13 (log2 fold-change 1.26, P = 2 × 10−5) and STMN1 (log2 
fold-change 1.07, P < 10−8), as upregulated in germinal center B 
cells44. Moreover, C-SIDE detected germinal center-localized fol-
licular dendritic cell (DC) markers CR2 (log2 fold-change 2.40, 
P < 10−8) and FDCSP (log2 fold-change 1.30, P < 10−8) as upregu-
lated in DCs within germinal centers45. Despite 3–4 cell types mix-
ing per spot, C-SIDE accurately determined which cell type(s) was 
responsible for differential gene expression. For instance, the che-
mokine CXCL13 was upregulated in B cell-rich regions (Fig. 5e). 
Despite dendritic cells comprising no more than 3–15% of each spot 
(Supplementary Fig. 9), C-SIDE was attributed the spatial pattern 
of CXCL13 to DCs (log2 fold-change 1.84, P < 10−8), consistent with 
the role of DCs in secreting CXCL13 to attract B cells to germinal 
centers46. C-SIDE assigned CXCL13 DE to dendritic cells by using 
that DE between the B cell-rich region and the B cell-poor region 
increased as a function of DC proportion (Fig. 5f). Thus, C-SIDE 
can determine cell type-specific DE, even for rare cell types that are 
consistently mixed with other cells.

C-SIDE discovers tumor-immune signaling in a mouse tumor model. 
Finally, we applied C-SIDE to identify genes with cell type-specific 
spatial DE in a Slide-seq dataset of a KrasG12D/+Trp53−/− (KP) mouse 
tumor model47, where we analyzed a metastatic lung adenocarci-
noma tumor deposit in the liver. First, C-SIDE found several cell 
types within the tumor, including both tumor cells and myeloid cells 
(Fig. 6a). Next, we ran C-SIDE nonparametrically to discover arbi-
trary smooth gene expression patterns (Supplementary Notes and 
Supplementary Table 7). We found three categories of genes within 
tumor cells: genes with variation due to sampling noise, spatial 
variation (explained by the C-SIDE model) or nonspatial biological 
variation (Fig. 6b and Supplementary Fig. 11). We then hierarchi-
cally clustered the C-SIDE estimated spatial patterns of DE genes 
into seven clusters (Fig. 6c and Supplementary Fig. 11). Testing 
for gene set enrichment (Supplementary Notes), we identified the 
Myc targets gene set as enriched in cluster 5 (7 out of 12 genes, 
P = 2 × 10−4, two-sided binomial test, Supplementary Table 8),  
a cluster most highly expressed at the tumor boundary (Fig. 6d). 
High expression of Myc target genes potentially indicates an 
increased rate of proliferation48 at the boundary, a proposed corre-
late of tumor severity49. For example, the most DE Myc target gene, 
Kpnb1 (Supplementary Fig. 11, P = 1 × 10−5), is an oncogene that 
drives cell proliferation and suppresses apoptosis50.

We next used C-SIDE to detect cell-to-cell interactions 
between tumor cells and immune cells, which are known to influ-
ence tumor cell behavior51. Using myeloid cell type density as the 
C-SIDE covariate (Fig. 6e), C-SIDE identified genes with immune 
cell density-dependent DE (Fig. 6f and Supplementary Table 9), 
including several genes that were also discovered by nonparametric 
C-SIDE (Supplementary Fig. 11). One of the genes with the larg-
est effects, Ccl2 (log2 fold-change 1.74, P < 10−8), is a chemotactic 
signaling molecule known to attract myeloid cells52. Furthermore, 
we tested C-SIDE’s DE gene estimates for aggregate effects across 
gene sets and found that the epithelial-mesenchymal transition 
(EMT) pathway was significantly upregulated near immune cells 
(Fig. 6f and Supplementary Fig. 11, P = 0.0011, permutation test 
(Methods) and Supplementary Table 8). C-SIDE additionally 
identified EMT-regulator Nfkb1 as positively DE in tumor cells in 
immune-rich regions (log2 fold-change 1.10, P = 1 × 10−5)53. As val-
idation, we find most tumor cells expressing EMT genes localized 
to immune-rich regions (Fig. 6g). Furthermore, a hematoxylin and 
eosin (H&E) tumor stain (Fig. 6h) demonstrated a EMT morpho-
logical change in the immune-rich region (spindle-shaped tumor 
cells) relative to the immune-poor region (polygonal-shaped 
tumor cells). Thus, morphological and gene expression changes 
indicate that the immune microenvironment influences EMT in 
this tumor model54.

Discussion
Explaining spatial sources of differential gene expression is a criti-
cal challenge for understanding biological mechanisms and disease 
with spatial transcriptomics. Here we introduced C-SIDE, a statisti-
cal method to detect cell type-specific DE in spatial transcriptomics 
datasets. C-SIDE takes as input one or more biologically relevant 

Fig. 5 | C-SIDE enables DE discovery on diverse spatial transcriptomics technologies including Visium and MERFISH. All panels show results of C-SIDE 
on the Visium lymph node (middle and bottom rows) and MERFISH hypothalamus (top row). a, C-SIDE’s spatial map of cell type assignments in the 
hypothalamus, where pixels were defined deterministically as squares without segmentation. All cell types are shown, and the most common cell types 
appear in the legend. b, Scatter plot of C-SIDE estimated inhibitory cell type DE with an without cell segmentation. c, Covariate used for C-SIDE: discrete 
region of B cell-rich areas in the lymph node. Overlayed with Visium histology image. d, Volcano plot of C-SIDE dendritic cell DE results in log2 space, 
with positive values corresponding to upregulated genes in the B cell regions. A subset of significant genes is labeled (two-sided Z-test with FDR control, 
Methods). Dotted lines represent 1.5× fold-change cutoff used for C-SIDE. e, Spatial plot of total expression of the CXCL13 gene, which was determined 
by C-SIDE to be DE in dendritic cells. Color represents counts per spot. f, Average expression (in counts per 500 (CP500)) of CXCL13 as a function of 
dendritic cell proportion and germinal center localization. Points represent raw data averages while lines represent C-SIDE predictions and error bars 
around points represent ±1.96 s.d. (75 ≤ n ≤ 326 points per group). All scale bars, 250 μm.
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covariates, such as spatial position or cell type colocalization, and 
identifies genes, for each cell type, that significantly change their 
expression as a function of these covariates. Tested on simulated 
spatial transcriptomics data, C-SIDE obtained unbiased estimation 

of cell type-specific differential gene expression with a calibrated 
false-positive rate, while other methods were biased from changes 
in cell type proportion or contamination from other cell types. In 
the cerebellum, we additionally used HCR experiments to validate 
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average plot of C-SIDE fitted gene expression (normalized to expression at center) as a function of distance from the center of the tumor for 12 genes in the 
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C-SIDE’s ability to identify cell type-specific DE across regions. We 
further applied C-SIDE to a detect DE depending on tubular micro-
environment in the testes, midline distance in the MERFISH hypo-
thalamus, germinal center localization in Visium lymph node and 
Aβ plaque density in the Alzheimer’s model hippocampus. Finally, 
we applied both nonparametric and parametric C-SIDE procedures 
in a mouse tumor model to discover an increase in tumor cells 
undergoing EMT transition in immune-rich regions.

Several studies have established the importance of accounting 
for cell type mixtures in assigning cell types in spatial transcrip-
tomics data18,21–23. However, it remains a challenge to incorporate 
cell type proportions into models of cell type-specific spatial dif-
ferential gene expression. C-SIDE enables such cell type-specific DE 
discovery by creating a statistical model of gene expression in the 
presence of cell type mixtures. Other potential solutions, such as 
bulk DE, approximation as single cell types, and decomposition into 
single cell types can be confounded by cell type proportion changes 
and contamination from other cell types. C-SIDE solves these issues 
by controlling for cell type proportions and jointly considering DE 
within each cell type. Even in imaging-based spatial transcriptomics 
methods such as MERFISH, we detected some pixels with cell type 
mixtures, indicating potential diffusion or imperfect cell segmenta-
tion20. To control for cell type proportions in DE analysis, C-SIDE 
can estimate cell types directly or import cell type proportions from 
any cell type mixture identification method18,21–23.

C-SIDE’s parametric mode provides a unified framework for 
detecting biologically relevant DE in spatial transcriptomics tissues 
along diverse axes including spatial distance, proximity to pathol-
ogy, cellular microenvironment and cell-to-cell interactions. In 
settings without previous biological hypotheses, C-SIDE may be 
run nonparametrically to discover general cell type-specific spatial 
gene expression patterns. C-SIDE can also be used to test among 
multiple models of DE, such as the linear and quadratic models 
applied to the hypothalamus dataset. To help decide between mul-
tiple relationships between covariates and gene expression, C-SIDE 
generates plots to visualize predicted and observed gene expression 
as a function of a particular covariate. C-SIDE can also use mul-
tiple covariates in a joint model of gene expression, such as spatial 
position and cell type colocalization, although more complicated 
models require more data to fit accurately. Beyond individual sam-
ples, C-SIDE can also model biological and technical variability in 
complex multi-sample, multi-replicate experiments. Multi-replicate 
experiments, although more costly, produce more robust DE esti-
mates by reducing spurious discoveries of DE on single replicates.

One challenge for C-SIDE is obtaining sufficient DE detection 
statistical power, which can be hindered by low gene expression 
counts, small pixel number or rare cell types. C-SIDE increases its 
statistical power by including cell type mixture pixels in its model. 
Ongoing technical improvements in spatial transcriptomics tech-
nologies2 such as increased gene expression counts, higher spatial 
resolution and increased pixel number, will increase the discovery 
rate of C-SIDE. Another limitation of C-SIDE is the requirement 
of an annotated single-cell reference for reference-based identifica-
tion of cell types. Although single-cell atlases are increasingly avail-
able, they may contain missing cell types or substantial platform 
effects18 and certain spatial transcriptomics tissues may lack a cor-
responding single-cell reference. An ongoing challenge for spatial 
transcriptomics is to learn cell type proportions in the absence of an 
annotated single cell reference.

We envision C-SIDE to be particularly powerful in detecting cell 
type-specific gene expression changes in pathology. First, previous 
Alzheimer’s disease studies have discovered candidate genes for 
disease-relevance through genome-wide association studies, bulk 
RNA, proteomics and scRNA-seq34,55. Here, with C-SIDE using Aβ 
plaques as a covariate, we identify many genes previously identi-
fied by these methods including Gfap in astrocytes32 and Apoe in 

microglia39; furthermore, we progress a step further toward mecha-
nistic understanding by directly associating spatial plaque local-
ization with cell type-specific DE. For example, previous studies 
have associated complement pathway activation in plaque-dense 
areas with synaptic pruning33 and neuronal degeneration34. 
Using C-SIDE we specifically assign complement protein C4b 
plaque-localized activation to astrocytes56, which could be caused 
by a plaque-triggered, cytokine-dependent signaling cascade35. 
Additionally, the downregulation of the homeostatic microglia 
marker P2ry12 in Alzheimer’s disease is associated with neuronal 
cell loss37. Using C-SIDE, we further localize this downregula-
tion to plaque-associated microglia, suggesting that plaque-dense 
areas trigger microglia activation and downregulate homeostatic 
microglia genes38. Last, the anti-inflammatory gene granulin (Grn), 
discovered by C-SIDE as upregulated in microglia near plaques, 
attenuates microglia activation40,57, potentially mitigating plaque 
deposition and cognitive pathological decline58.

Second, C-SIDE has the potential to explain cellular interac-
tions. For example, recent studies have characterized cell-to-cell 
interactions of immune cells influencing the behavior of tumor 
cells51. Likewise, on a Slide-seq dataset of a mouse tumor model, 
C-SIDE identified synergistic cell-to-cell signaling between tumor 
cells and myeloid immune cells. For example, Ccl2, upregulated 
in immune-adjacent tumor cells, chemotactically recruits myeloid 
cells and induces protumorigenic behavior, including growth, 
angiogenesis and metastasis, in myeloid cells52. Likewise, the EMT 
pathway, upregulated near myeloid cells, promotes tumor develop-
ment and metastasis54. Although C-SIDE can establish such associa-
tions, conclusive establishment of molecular mechanism requires 
future experimentation. Among other hypotheses, it is plausible 
that myeloid cells induce tumor cells to undergo the EMT transi-
tion, potentially through the NF-κB (also identified as upregulated 
by C-SIDE) signaling pathway51,54. Therefore, C-SIDE, combined 
with pathological measurements, can explain cell type-specific 
responses to disease. We envision C-SIDE as a powerful framework 
for studying the effects of spatial and environmental context on cel-
lular gene expression in spatial transcriptomics data.
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Methods
Ethics statement. All procedures involving animals at the Broad Institute were 
conducted in accordance with the US National Institutes of Health Guide for the 
Care and Use of Laboratory Animals under protocol number 0120-09-16. No field 
samples were collected for this study.

C-SIDE model. Here, we describe C-SIDE, a statistical method for identifying DE 
in spatial transcriptomics data. We define the C-SIDE model in equations (1)–(3).  
Before fitting C-SIDE, the design matrix is predefined to contain covariates, 
variables on which gene expression is hypothesized to depend such as spatial 
position or cellular microenvironment. Recall that xi,ℓ,g represents the ℓth covariate, 
evaluated at pixel i in experimental sample g. For each covariate x⋅,ℓ,g, there is a 
corresponding coefficient αℓ,k,j,g, representing a gene expression change across 
pixels per unit change of x⋅,ℓ,g within cell type k of experimental sample g. Next, 
recall from equation (2) random effects γj,g and εi,j,g, which we assume both follow 
normal distributions with mean 0 and standard deviations σγ,g and σε,j,g, respectively. 
The overdispersion magnitude, σε,j,g varies across gene j (Supplementary Fig. 12)  
and modeling gene-specific overdispersion is necessary for controlling the false- 
positive rate of C-SIDE.

Due to our finding that genes can exhibit DE in some but not all cell types 
(Fig. 3c), C-SIDE generally does not assume that genes share DE patterns across 
cell types, allowing for the discovery of cell type-specific DE. We also developed 
an option where DE can be assumed to be shared across cell types (Supplementary 
Notes). C-SIDE can be thought of as a modification of the generalized linear model 
(GLM)25 in which each cell type follows a cell type-specific log-linear model before 
an additive mixture of all cell types is observed. See Fitting the C-SIDE model and 
Hypothesis testing for C-SIDE model fitting and hypothesis testing, respectively.

Parameterization of the design matrix. For specific construction of design matrix 
x for each dataset, see Cell type proportion estimation and covariate construction. 
Recall the specific examples of design matrix x presented in Fig. 1b. In general,  
x can obtain the following forms:

	(1)	 Indicator variable. In this case, xi,ℓ,g is always either 0 or 1, representing DE 
due to membership within a certain spatially defined pixel set. The coefficient 
αk,j,g is interpreted as the log-ratio of gene expression between the two sets for 
cell type k and gene j in experimental sample g.

	(2)	 Continuous variable. In this case, xi,ℓ,g can take on continuous values repre-
senting, for example, distance from some feature or density of some element. 
The coefficient αℓ,k,j,g is interpreted as the log fold-change of gene expression 
per unit change in xi,ℓ,g for cell type k and gene j in sample g.

	(3)	 Multiple categories. In this case, we use x to encode membership in L ≥ 2 
sets. For each 1 ≤ ℓ ≤ L, we define xi,ℓ,g to be an indicator variable representing 
membership in set ℓ for sample g. To achieve identifiability, the intercept is 
removed. The coefficient αℓ,k,j,g is interpreted as the average gene expression in 
set ℓ for cell type k and gene j. Cell type-specific DE is determined by detect-
ing changes in αℓ,k,j,g across ℓ within cell type k and sample g.

	(4)	 Nonparametric. In this case, we use x to represent L smooth basis functions, 
where linear combinations of these basis functions represent the overall 
smooth gene expression function. By default, we use thin plate spline basis 
functions, calculated using the mgcv package26.

In all cases, we normalize each xi,ℓ,g to range between 0 and 1. The problem is 
equivalent under linear transformations of x, but this normalization helps with 
computational performance. The intercept term, when used, is represented in x as 
a column of 1s.

Fitting the C-SIDE model. C-SIDE estimates the parameters of (1), (2), and (3) 
via maximum likelihood estimation. First, all parameters are independent across 
samples, so we fit the model independently for each sample. For population 
inference across multiple samples, see Statistical inference on multiple samples/
replicates. Next, the parameters of βi,k and γj are estimated by the RCTD algorithm18. 
C-SIDE can also optionally import cell type proportions from external cell type 
proportion identification methods21–23. Here, some pixels are identified as single cell 
types while others as mixtures of multiple cell types. We can accurately estimate cell 
type proportions and platform effects without being aware of differential spatial gene 
expression because differential spatial gene expression (average 0.38 in for example 
cerebellum Slide-seq data) is smaller than gene expression differences across cell 
types (average s.d. 1.09 in for example cerebellum Slide-seq data). After determining 
cell type proportions, C-SIDE estimates gene-specific overdispersion magnitude σε,j,g 
for each gene by maximum likelihood estimation (Supplementary Notes). Finally, 
C-SIDE estimates the DE coefficients α by maximum likelihood estimation. For the 
final key step of estimating α, we use plugin estimates (denoted by ^) of β, γ and σε. 
After we substitute equation (3) into equation (1) and (2), we obtain:

Yi,j,g
∣

∣εi,j,g ≈ Poisson
{

Ni,g exp
[

log
( K
∑

k=1
β̂i,k,g exp

(

α0,k,j,g +
L
∑

ℓ=1
xi,ℓ,gαℓ,k,j,g

))

+ γ̂j,g + εi,j,g
]}

(4)

εi,j,g ≈ Normal(0, σ̂2
ε,j,g), (5)

We provide an algorithm for computing the maximum likelihood estimator of 
α, presented in the Supplementary Notes. Our likelihood optimization algorithm 
is a second-order, trust-region59 based optimization (Supplementary Notes). In 
brief, we iteratively solve quadratic approximations of the log-likelihood, adaptively 
constraining the maximum parameter change at each step. Critically, the likelihood 
is independent for each gene j (and sample g) so separate genes are run in parallel, 
in which case there are K × (L + 1)α parameters per gene and sample.

Hypothesis testing. In addition to estimating the vector αj,g (dimensions L + 1 by K) 
for gene j and sample g, we can compute standard errors around αj,g. By asymptotic 
normality60 (Supplementary Notes), we have approximately that (setting n to be the 
total number of pixels),

√

n(α̂j,g − αj,g) ≈ Normal(0, I−1
αj,g

), (6)

where Iαj,g is the Fisher information of the model in equation (4), which is 
computed in the Supplementary Notes. Given this result, we can compute standard 
errors, confidence intervals and hypothesis tests. As a consequence of equation (6), 
the standard error of αℓ,k,j,g, denoted sℓ,k,j,g, is 

√

(I−1
αj,g )ℓ,k

/n.

First, we consider the case where we are interested in a single parameter, αℓ,k,j,g, 
for ℓ and g fixed and for each cell type k and gene j; for example, αℓ,k,j,g could 
represent the log fold-change between two discrete regions. In this case, for each 
gene j, we compute the z-statistic, zℓ,k,j,g =

αℓ,k,j,g
sℓ,k,j,g

. Using a two-tailed z-test, we 
compute a P value for the null hypothesis that αℓ,k,j,g = 0 as pℓ,k,j,g = 2 × F(−∣zℓ,k,j,g∣),  
where F is the distribution function of the standard normal distribution. Finally, q 
values are calculated across all genes within a cell type to control the FDR using the 
Benjamini–Hochberg procedure61. We used a FDR of 0.01 (0.1 for nonparametric 
case) and a fold-change cutoff of 1.5 (not applicable for nonparametric case). 
Additionally, for each cell type, genes were prefiltered so that the expression within 
the cell type of interest had a total expression of at least 15 UMIs over all pixels and 
that the mean normalized expression is at least r% as large as expression within 
each other cell type. The parameter r% (default 50%, set to 25% on Alzheimer’s 
dataset) is used to filter out marker genes of other cell types that may contaminate 
the DE estimates of the cell type of interest. We recommend setting r between 
25 and 50%, trading off between increasing DE discoveries and risking false 
discoveries due to marker gene contamination.

For the multi-region case, we test for differences of pairs of parameters 
representing the average expression within each region, correcting for multiple 
hypothesis testing by scaling P values. We select genes that have significant 
differences between at least one pair of regions. For other cases in which we are 
interested in multiple parameters, for example the nonparametric case, we test each 
parameter individually and scale P values due to multiple hypothesis testing.

Statistical inference on multiple samples/replicates. When C-SIDE is run on 
multiple replicates, we recall αg and sg are the DE and standard error for replicate g, 
where 1 ≤ g ≤ G and G > 1 is the total number of replicates. We now consider testing 
for DE across all replicates for covariate ℓ, cell type k and gene j. In this case, we 
assume that additional biological or technical variation across samples exists, such 
that each unknown αg is normally distributed around a population-level DE A, 
with standard deviation τ:

αℓ,k,j,g
i.i.d.
∼ Normal(Aℓ,k,j , τ2

ℓ,k,j). (7)

Under this assumption, and using equation (6) for the distribution of the observed 
single-sample estimates α̂, we derive the following feasible generalized least squares 
estimator of A (Supplementary Notes),

Âℓ,k,j :=

∑G
g=1(α̂ℓ,k,j,g)/(τ̂2

ℓ,k,j + s2
ℓ,k,j,g)

∑G
g=1 1/(τ̂2

ℓ,k,j + s2
ℓ,k,j,g)

. (8)

Here, α̂ and s are obtained from C-SIDE estimates on individual samples 
(equation (6)), whereas τ̂2 represents the estimated variance across samples 
(Supplementary Fig. 12). Please see the Supplementary Notes for additional 
details such as the method of moments procedure62 for estimating τ̂2

ℓ,k,j and the 
standard errors of A. Intuitively, our estimate of the population-level DE is a 
variance-weighted sum over the DE estimates of individual replicates, similar to 
meta-analysis methods62. We next use these estimates and standard errors to test 
the hypothesis that Aℓ,k,j = 0 as described in Hypothesis testing. For the case of 
multiple biological samples and multiple replicates within each sample, see the 
Supplementary Notes. Multiple sample inference with nonparametric C-SIDE 
requires a common coordinate system, and we create a common spline basis and 
then test each coefficient across all samples.

Spatial transcriptomics, scRNA-seq, Aβ imaging and HCR data. Using the 
Slide-seqV2 protocol2 (Supplementary Notes), we collected four Alzheimer’s 
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Slide-seq mouse hippocampus sections31 on a female 8.8-month-old J20 
Alzheimer’s mouse model31 and three Slide-seq mouse cerebellum sections (one 
from a previous study18). The Slide-seq mouse testes9 and cancer47, MERFISH 
hypothalamus8, and Visium lymph node43 datasets were obtained from previous 
studies. The tumor dataset represented a KrasG12D/+Trp53−/− (KP) mouse metastatic 
lung adenocarcinoma tumor in the liver. We used cell type-annotated scRNA-seq 
datasets for the testes63, hypothalamus8, cerebellum27, cancer47, lymph node23 and 
Alzheimer’s hippocampus datasets64.

Slide-seq data was preprocessed using the Slide-seq tools pipeline2. Spatial 
transcriptomic spots were filtered to a minimum of 100 UMIs, and the region 
of interest (ROI) was cropped before running C-SIDE using overall anatomical 
features. For example, in Slide-seq Alzheimer’s hippocampus, the somatosensory 
cortex was cropped out before analysis.

For the Alzheimer’s dataset, to define an amyloid plaque C-SIDE covariate, we 
collected fluorescent images of DAPI (4,6-diamidino-2-phenylindole) and amyloid 
beta (Aβ), using IBL America Amyloid Beta (N) (82E1) Aβ Anti-Human Mouse 
IgG MoAb on sections adjacent to the Slide-seq data. We coregistered the DAPI 
image to the adjacent Slide-seq total UMI image using the ManualAlignImages 
function from the STutility R package65. To calculate plaque density, plaque images 
were convolved with an exponentially decaying isotropic filter, using a threshold at 
the 0.9 quantile, normalized to be between 0 and 1, and averaged over two adjacent 
amyloid sections.

For in situ RNA hybridization validation of cerebellum DE results, we collected 
HCR data on genes Aldoc, Kcnd2, Mybpc1, Plcb4 and Tmem132c (Supplementary 
Table 10)66. We simultaneously collected cell type marker genes27 of Bergmann 
(Gdf10), granule (Gabra6) and Purkinje (Calb1) cell types. Data from Kcnd2 
were removed due to measuring tissue autofluorescence rather than RNA. ROI of 
nodular and anterior regions were cropped, and background, defined as median 
signal, was subtracted. For this data, DE was calculated as the log fold-change, 
across ROI, of average gene signal over the pixels within the ROI containing cell 
type markers of a particular cell type. Pixels containing marker genes of multiple 
cell types were removed. C-SIDE single-sample standard errors in Fig. 3d were 
calculated by modeling single-sample variance as the sum of the variance across 
samples and variance representing uncertainty around the population mean.

Cell type proportion estimation and covariate construction. For each dataset, we 
constructed at least one covariate, an axis along which to test for DE. All covariates 
were scaled linearly to have minimum 0 and maximum 1. For the cerebellum 
dataset, the covariate was defined as an indicator variable representing membership 
within the nodular region (versus the anterior region). For the testes dataset, a 
discrete covariate represented the cellular microenvironment of tubule stage, labels 
obtained from tubule-level gene expression clustering (four stages, I–III, IV–VI, 
VII–VIII and IX–XII) from the previous Slide-seq testes study9. For the cancer 
dataset, the myeloid cell type density covariate was calculated by convolving the 
cell type locations, weighted by UMI number, with an exponential filter. For this 
dataset, we also ran C-SIDE nonparametrically. For the Alzheimer’s hippocampus 
dataset, see Spatial transcriptomics, scRNA-seq, Aβ imaging and HCR data . For 
the MERFISH hypothalamus dataset, the covariate was linear or quadratic midline 
distance. For the quadratic MERFISH C-SIDE model, we conducted hypothesis 
testing on the quadratic coefficient. To estimate platform effects and cell type 
proportions, RCTD ran with default parameters on full mode for the testes and 
lymph node datasets and doublet mode for other datasets18.

Validation with simulated gene expression dataset. We created a ground truth 
DE simulation, from the cerebellum single-nucleus RNA-seq dataset, to test 
C-SIDE on mixtures between two cell type layers. We restricted to Purkinje and 
Bergmann cell types, which are known to spatially colocalize. To simulate a cell 
type mixture of cell types A (Purkinje) and B (Bergmann), we randomly chose a 
cell from each cell type, and sampled a predefined number of UMIs from each cell 
(total 1,000). We defined two discrete spatial regions (Fig. 1a), populated with A/B 
cell type mixtures. We varied the mean cell type proportion difference across the 
two regions and also simulated the case of cell type proportions evenly distributed 
across the two regions. Cell type-specific spatial differential gene expression also 
was simulated across the two regions. To simulate cell type-specific DE in the gene 
expression step of the simulation, we multiplicatively scaled the expected gene 
counts within each cell of each cell type. An indicator variable for the two spatial 
bins was used as the C-SIDE covariate.

Additional computational analysis. For confidence intervals on data points or 
groups of data points (Fig. 1d,k), we used the predicted variance of data points 
from C-SIDE (Supplementary Notes). Likewise, for such analysis we used predicted 
counts from C-SIDE at each pixel (Supplementary Notes). For the testes dataset, 
a cell type was considered to be present on a bead if the proportion of that cell 
type was at least 0.25 (Fig. 4d). Additionally, cell type and stage-specific marker 
genes were defined as genes that had a fold-change of at least 1.5 within the cell 
type of interest compared to each other cell type. We also required significant cell 
type-specific DE between the stage of interest with all other stages (fold-change 
of at least 1.5, significance at the level of 0.001, Monte Carlo test on Z-scores). 
Cyclic genes were defined as genes whose minimum expression within a cell type 

occurred two tubule stages away from its maximum expression, up to log space 
error of up to 0.25. For analyzing C-SIDE on cerebellum subtypes, we focused on 
five granule subtypes since granule was the most commonly occurring cell type, 
thus yielding the most statistical power (Supplementary Fig. 7). We tested for 
significant differences in the estimated DE coefficients between the subtype model 
and the original model without subtypes.

For nonparametric C-SIDE on the tumor dataset, we used hierarchical Ward 
clustering to cluster quantile-normalized spatial gene expression patterns into 
seven clusters. For gene set testing on the tumor dataset, we tested the 50 hallmark 
gene sets from the MSigDB database67 for aggregate effects in C-SIDE DE estimates 
for the tumor cell type. For the nonparametric case, we used a binomial test with 
multiple hypothesis correction to test for enrichment of any of the seven spatial 
clusters of C-SIDE-identified significant genes in any of the 50 gene sets. For 
the parametric case, we used a permutation test on the average value of C-SIDE 
Z-scores for a gene set. That is, we modified an existing gene set enrichment 
procedure68 by filtering for genes with a fold-change of at least 1.5 and using a 
two-sided permutation test rather than assuming normality. In both cases, we 
filtered to gene sets with at least five genes and we used Benjamini–Hochberg 
procedure across all gene sets to control the FDR at 0.05. The proportion of 
variance not due to sampling noise (Fig. 6b) was calculated by considering the 
difference between observed variance on normalized counts and the expected 
variance due to Poisson sampling noise.

We considered and tested several simple alternative methods to C-SIDE, which 
represent general classes of approaches. First, we considered a two-sample Z-test 
on single cells (defined as pixels with cell type proportion at least 0.9). Additionally, 
we tested bulk DE, which estimated DE as the log-ratio of average normalized gene 
expression across two regions. The single method of DE rounded cell type mixtures 
to the nearest single cell type and computed the log-ratio of gene expression of cells 
in that cell type. Finally, the decompose method of DE used a previously developed 
method to compute expected gene expression counts for each cell type18, followed 
by computing the ratio of cell type-specific gene expression in each region.

Implementation details. C-SIDE is publicly available as part of the R package 
https://github.com/dmcable/spacexr. The quadratic program that arises in the 
C-SIDE optimization algorithm is solved using the quadprog package in R69. Before 
conducting analysis on C-SIDE output, all ribosomal proteins and mitochondrial 
genes were filtered out. Additional parameters used for running C-SIDE are shown 
in Supplementary Table 11. C-SIDE was tested on a Macintosh laptop computer 
with a 2.4 GHz Intel Core i9 processor and 32 GB of memory (we recommend at 
least 4 GB of memory to run C-SIDE). For example, we timed C-SIDE with four 
cores on one of the Slide-seq cerebellum replicates, containing 2,776 pixels across 
two regions, five cell types and 4,812 genes. Under these conditions, C-SIDE ran in 
13 min and 47 s (excluding the cell type assignment step in which computational 
efficiency has been described previously18).

C-SIDE can be run using a general covariate matrix with the function run.
CSIDE. In most cases, a more specific function exists for specific covariates 
including run.CSIDE.single (one covariate), run.CSIDE.regions (multiple regions) 
or run.CSIDE.nonparam (nonparametric). Moreover, to generate covariates for for 
example run.CSIDE.single, the functions exvar.celltocell.interactions and exvar.
point.density can be used to calculate covariates for the density of cell types or 
additional features, respectively. For multiple replicates/samples, the function run.
CSIDE.replicates can be used, while the function CSIDE.population.inference 
performs population inference across these replicates. Multi-replicate analysis 
requires covariates to be consistently defined, for example, in nonparametric mode 
the coordinates must exist in a common coordinate system, which can be obtained, 
for instance, by alignment. Please see https://github.com/dmcable/spacexr/tree/ 
master/vignettes for Vignettes for running C-SIDE, https://github.com/dmcable/ 
spacexr/tree/master/documentation for additional documentation and 
Supplementary Software 1 for the manual for the spacexr R package.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Slide-seq V2 data generated for this study and additional data are available 
at the Broad Institute Single Cell Portal https://singlecell.broadinstitute.org/
single_cell/study/SCP1663. We also used the following publicly available 
datasets in our study. MERFISH hypothalamus dataset was accessed from Dryad 
https://doi.org/10.5061/dryad.8t8s248. Visium human lymph node is available 
at https://www.10xgenomics.com/resources/datasets/human-lymph-node-
1-standard-1-1-0. Testes Slide-seq data can be accessed at https://www.dropbox.
com/s/ygzpj0d0oh67br0/Testis_Slideseq_Data.zip?dl=0. Cancer Slide-seq data 
are available at https://singlecell.broadinstitute.org/single_cell/study/SCP1278. 
Hallmark gene sets were accessed from https://www.gsea-msigdb.org/.

Code availability
C-SIDE is implemented in the open-source R package spacexr, with source code 
freely available at https://github.com/dmcable/spacexr. Additional code used for 
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analysis in this paper is available at https://github.com/dmcable/spacexr/tree/
master/AnalysisCSIDE.
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